Enoncé des exercices de la semaine 7 (CH160-b)

Exercice 1 (7.2.12)

L'acétylène, C₂H₂, peut se préparer selon l'équation suivante :

$$CaC_2(s) + 2 H_2O(\ell) \rightarrow C_2H_2(g) + Ca(OH)_2(aq)$$

Un spéléologue veut utiliser une lampe à acétylène qui consomme 10 L de gaz (mesuré à 0° et sous 1 atm) par heure de fonctionnement. Il compte rester 8 heures sous terre. Combien doit-il emporter de carbure de calcium, CaC₂ (en grammes) et d'eau (mililitres) ?

Exercice 2 (7.1.3)

On obtient du titane métallique par la réaction du magnésium fondu $Mg(\ell)$ avec du chlorure de titane $TiCl_4(g)$ à environ $1000^{\circ}C$ selon la réaction suivante

$$TiCl_4(g) + 2 Mg(\ell) \rightarrow Ti(s) + 2 MgCl_2(\ell)$$

Au cours d'un essai en laboratoire, on mélange 354 g de TiCl₄ à 113 g de Mg : on obtient 79.1 g de Ti

- a) Quel est le réactif limitant ?
- b) Quel est le rendement de l'opération?

Exercice 3 (7.2.9, modifié)

On mélange 25 kg de Fe₂O₃ et 17,5 m³ de CO à 25°C et 1 atm selon la réaction suivante

$$Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(s) + 3CO_2(g)$$

- a) Quel est le réactif limitant ?
- b) Quelle quantité de fer peut-on préparer ?
- e) Quel réactif reste-t-il à la fin de réaction et en quelle quantité ?

Exercice 4 (7.2.13, modifié)

100 kg d'aluminium réagissent avec un excès d'acide chlorhydrique HCl produisant 122 m³ de gaz dihydrogène à 25°C et 1 bar selon la réaction suivante

a Al(s) + b HCl(g)
$$\rightarrow$$
 c AlCl₃(s) + d H₂ (g)

- a) Ecrire la réaction équilibrée
- b) Calculer le rendement.

_		_
HVA	rcice	^
$I J \Lambda C$		_,

Exercice 5 150 g de CaC ₂ (s) (64 g mol ⁻¹) réagissent avec 100 g d'eau à 25°C et 1 bar pour donne l'acétylène C ₂ H ₂ (g) selon la réaction suivante:	er de
$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$	
 a) Le réactif limitant est H₂O b) Il se produit environ 58 L de C₂H₂ c) Il se produit environ 68 L de C₂H₂ d) Il se produit environ 173 g de Ca(OH)₂ 	
Exercice 6 Soit la réaction complète suivante	
$2 \text{ C (s)} + \text{O}_2 \text{ (g)} \rightarrow 2 \text{ CO (g)}$	
Dans un récipient fermé de 6 L maintenu à 55°C, on introduit 0.18 mol de C et 0.5 bar d	le O ₂ .
En considérant que la réaction est complète, indiquer, dans la liste suivante, la ou les propositions(s) correcte(s)	
 a) à la fin de la réaction, on a produit 0.18 moles de CO b) à la fin de la réaction, il reste 0.02 mol de O₂ c) à la fin de la réaction, il reste 0.8 g de C d) à la fin de la réaction, la pression totale est 1 bar 	